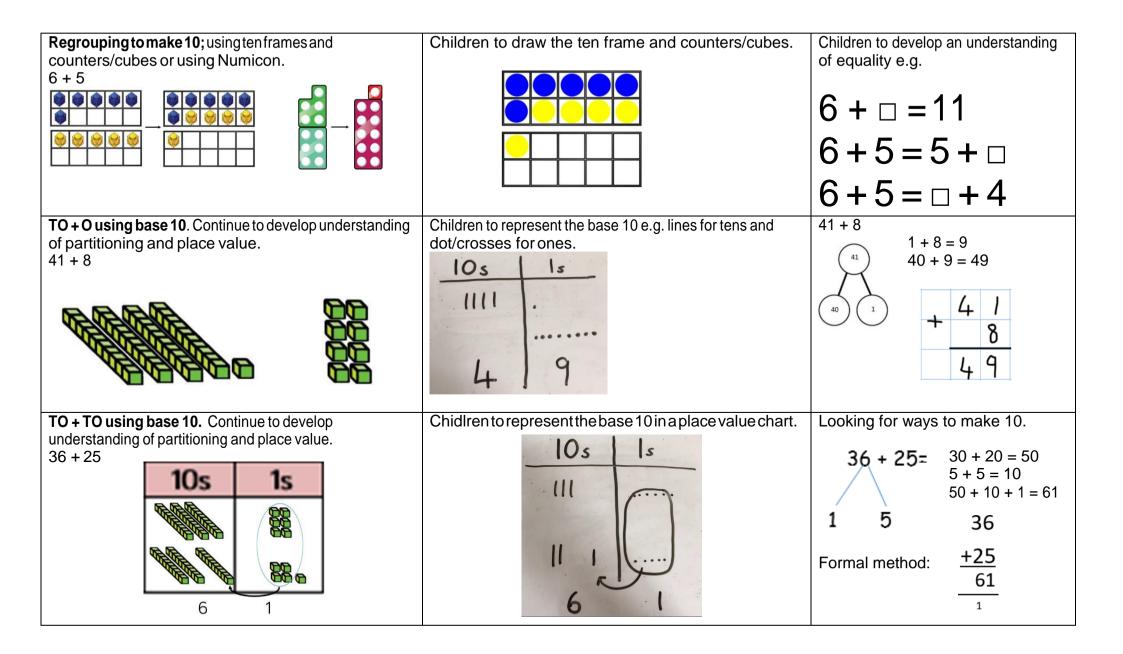
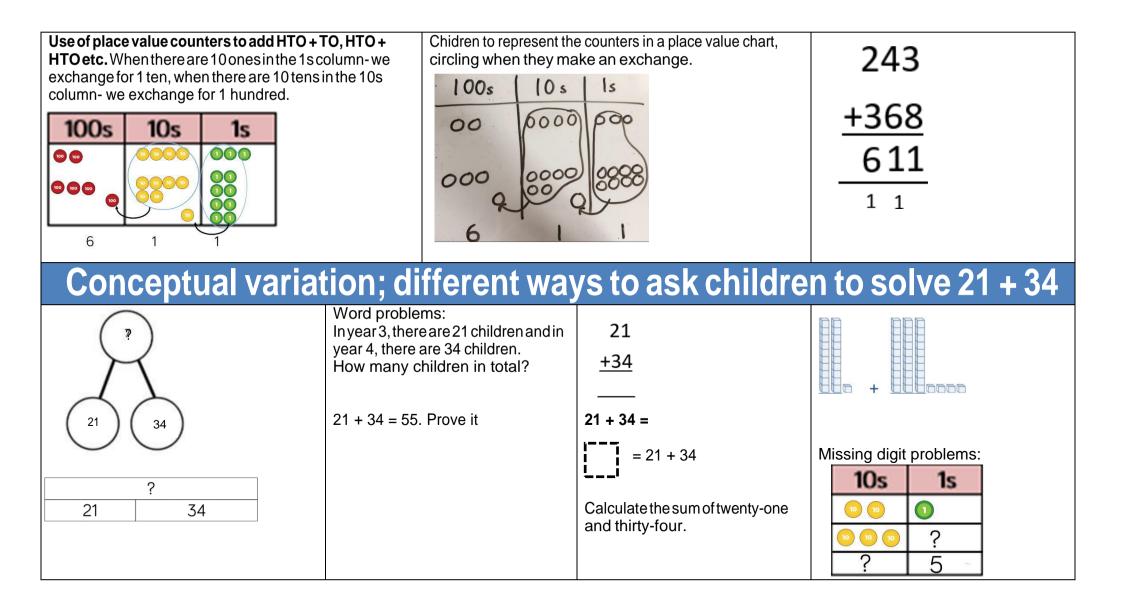


MATHS CALCULATION POLICY

Mastery Document

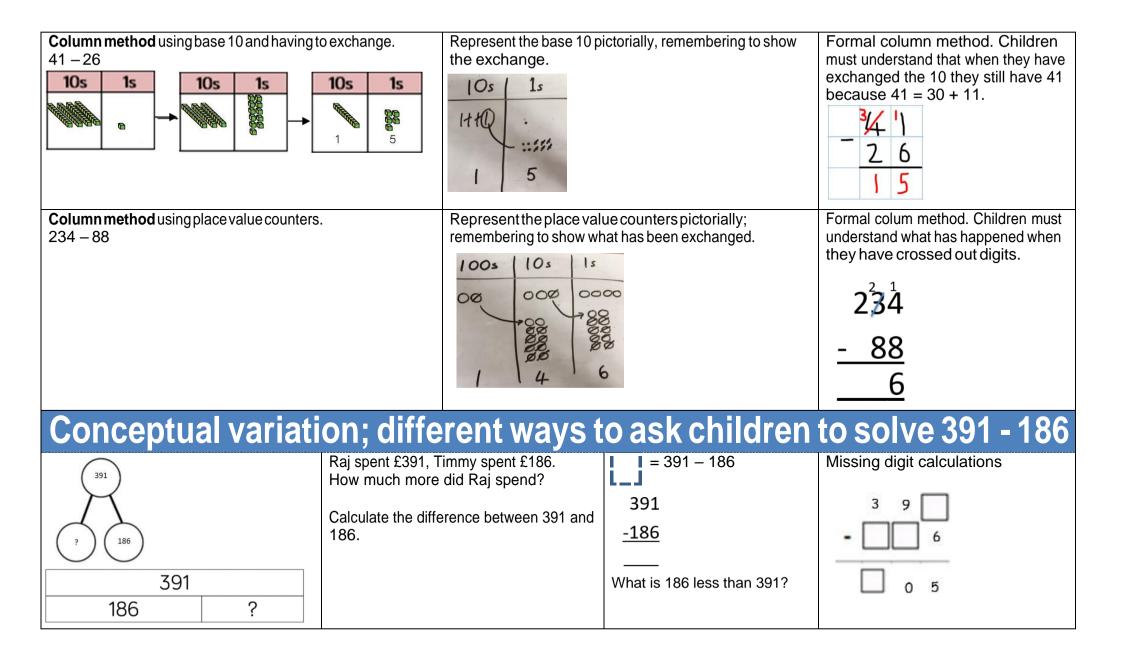



2021/22 THE WOODLAND FEDERATION

Calculation policy: Addition

Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

Concrete	Pictorial	Abstract
Combining two parts to make a whole (use other resources too e.g. eggs, shells, teddy bears, cars).	Children to represent the cubes using dots or crosses. They could put each part on a part whole model too.	4+3=7 Four is a part, 3 is a part and the whole is seven.
Counting on using number lines using cubes or Numicon.	Abar model which encourages the children to count on, rather than count all.	The abstract number line: What is 2 more than 4? What is the sum of 2 and 4? What is the total of 4 and 2? 4 + 2



Calculation Subtraction

Key language: take away, less than, the difference, subtract, minus, fewer, decrease.

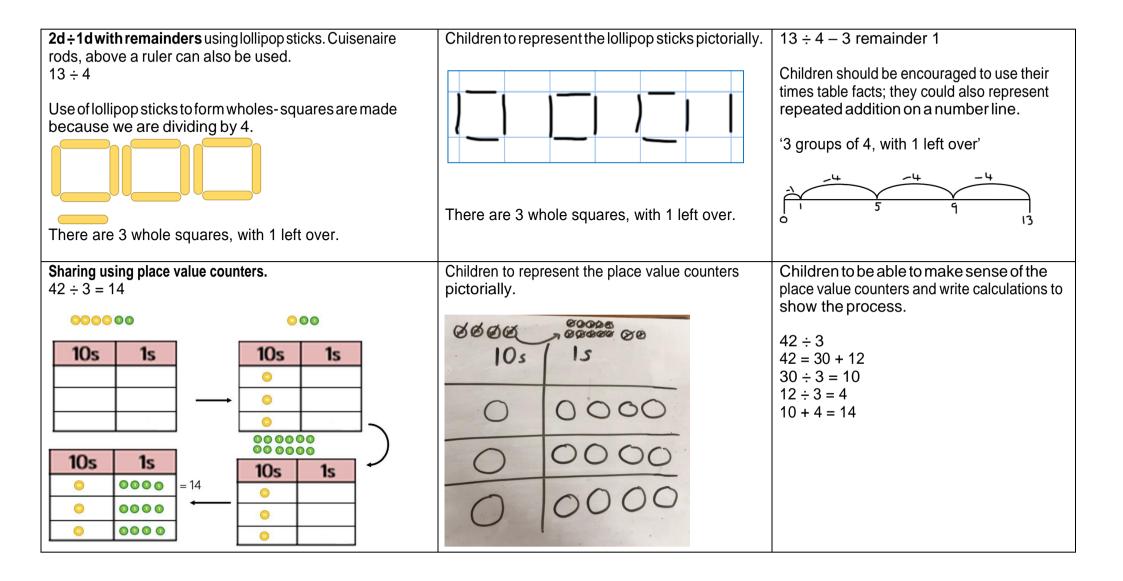
Concrete	Pictorial	Abstract
Physically taking away and removing objects from a whole (ten frames, Numicon, cubes and other items such as beanbags could be used).	Children to draw the concrete resources they are using and cross out the correct amount. The bar model can also be used.	4-3 = = 4 - 3
4-3=1	XXXX XXX	4 3 ? 4 ? 3
Counting back (using number lines or number tracks) children start with 6 and count back 2. 6-2=4	Children to represent what they see pictorially e.g.	Children to represent the calculation on a number line or number track and show their jumps. Encourage children to use an empty number line
1 2 3 4 5 6 7 8 9 10	12345678910	012345678910
		46

Finding the difference (using cubes, Numicon or Cuisenaire rods, other objects can also be used). Calculate the difference between 8 and 5.	Children to draw the cubes/other concrete objects which they have used or use the bar model to illustrate what they need to calculate.	Find the difference between 8 and 5. 8 – 5, the difference is Children to explore why 9-6=8-5=7-4 have the same difference.		
Making 10 using ten frames. 14-5 -4 $-1-4$ $-1-4$ -5	Children to present the ten frame pictorially and discuss what they did to make 10.	Children to show how they can make 10 by partitioning the subtrahend. $14 - 5 = 9$ $4 \qquad 1$ $14 - 4 = 10$ $10 - 1 = 9$		
Column method using base 10. 48-7 10s 1s 48-7 48-7 48-7 4 1	Children to represent the base 10 pictorially.	Column method or children could count back 7. 48 - 7 41		

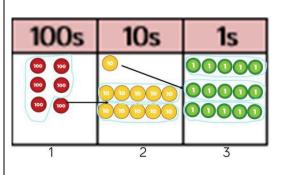
Calculation policy: Multiplication

Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups.

Concrete	Pictorial	Abstract		
Repeated grouping/repeated addition 3 × 4 4 + 4 + 4 There are 3 equal groups, with 4 in each group.	Children to represent the practical resources in a picture and use a bar model.	3 × 4 = 12 4 + 4 + 4 = 12		
Number lines to show repeated groups- 3 × 4	Represent this pictorially alongside a number line e.g.:	Abstract number line showing three jumps of four. $3 \times 4 = 12$		


Use arrays to illustrate commutativity counters and other objects can also be used. $2 \times 5 = 5 \times 2$ 2 lots of 5 5 lots of 2	Children to represent the arrays pictorially.	Children to be able to use an array to write a range of calculations e.g. $10=2\times5$ $5\times2=10$ 2+2+2+2+2=10 10=5+5
Partition to multiply using Numicon, base 10 or Cuisenaire rods. 4 × 15	Children to represent the concrete manipulatives pictorially.	Children to be encouraged to show the steps they have taken. 4×15 10 5 $10 \times 4 = 40$ $5 \times 4 = 20$ 40 + 20 = 60 A number line can also be used 40 + 10 + 10 + 10 + 10 + 10 + 10 + 10 +
Formal column method with place value counters (base 10 can also be used.) 3 × 23	Children to represent the counters pictorially. $ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Children to record what it is they are doing to show understanding. 3×23 $3 \times 20 = 60$ $ \ 3 \times 3 = 9$ $20 \ 3 \ 60 + 9 = 69$ 23 $\frac{\times 3}{69}$

Formal column method with place value counters. 6 x 23 100s 10s 1s 100s 1s 100s 10s 1s 100s 1s 10	0, pictorially Formal written method $6 \times 23 =$ 23 $\frac{\times 6}{138}$ $1 1$ nct: $1 2 4$ $\frac{\times 26}{-7 4 4}$ $2 - 4 = 0$ $3 2 2 4$ Answer: 3224	
23 23 23 23 23 23 23 ? ?	to swim 23 lengths, 6 times Find the product c iny lengths did she swim in $6 \times 23 =$	K children to solve 6 × 23 of6and23 What is the calculation? What is the product? 100s 10s 000 000


Calculation policy: subtraction

Keylanguage: share, group, divide, divided by, half.

Concrete	Pictorial	Abstract		
Sharing using a range of objects. 6 ÷ 2	Represent the sharing pictorially.	$6 \div 2 = 3$		
	$\bigcirc \bigcirc $	3 3		
	· · · · · · · · · · · · · · · · · · ·	Children should also be encouraged to use their 2 times tables facts.		
Repeated subtraction using Cuisenaire rods above a ruler. 6 ÷ 2	Children to represent repeated subtraction pictorially.	Abstract number line to represent the equal groups that have been subtracted.		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-z -2 -2 0 1 2 3 4 5 6 3 groups		
3 groups of 2				

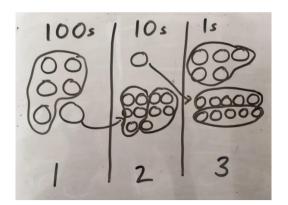
Short division using place value counters to group. $615 \div 5$

1. Make 615 with place value counters.

2. How many groups of 5 hundreds can you make with 6 hundred counters?

3. Exchange 1 hundred for 10 tens.

4. How many groups of 5 tens can you make with 11 ten counters?


5. Exchange 1 ten for 10 ones.

6. How many groups of 5 ones can you make with 15 ones?

Long division using place value counters 2544 ÷ 12

1000s	100s	10s	1s 0000	We can't group 2 thousands into groups of 12 so will exchange them.
1000s	100s	10s	1s	We can group 24 hundreds into groups of 12 which leaves with 1 hundred.

Represent the place value counterspictorially.

Children to the calculation using the short division scaffold.

<u>123</u> 5⁶¹15

1000s	100s	10s	1s	After exchanging the hundred, we have 14 tens. We can group 12 tens into a group of 12, which leaves 2 tens.	$ \begin{array}{r} \begin{array}{r} 0 & 2 & 1 \\ 2 & 5 & 4 \\ 24 \\ $
1000s	100s	10s	1s	After exchanging the 2 tens, we have 24 ones. We can group 24 ones into 2 group of 12, which leaves no remain	$ \begin{array}{r} 0 & 2 & 1 & 2 \\ 12 & 2544 \\ 24 \\ 24 \\ $

Conceptual variation; different ways to ask children to solve 615 ÷ 5

Using the part whole model below, how can you divide 615 by 5 without using short division?	I have £615 and share it equally between 5 bank accounts. How much will be in each account?	5 615	What is the cal What is the a		
615 500 100 15	615 pupils need to be put into 5 groups. How many will be in each group?	615 ÷ 5 =	100s	10s	1 s 00000 00000 00000